Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins.

نویسندگان

  • Johanna Rivera
  • Radames J B Cordero
  • Antonio S Nakouzi
  • Susana Frases
  • André Nicola
  • Arturo Casadevall
چکیده

Extracellular vesicle production is a ubiquitous process in Gram-negative bacteria, but little is known about such process in Gram-positive bacteria. We report the isolation of extracellular vesicles from the supernatants of Bacillus anthracis, a Gram-positive bacillus that is a powerful agent for biological warfare. B. anthracis vesicles formed at the outer layer of the bacterial cell had double-membrane spheres and ranged from 50 to 150 nm in diameter. Immunoelectron microscopy with mAbs to protective antigen, lethal factor, edema toxin, and anthrolysin revealed toxin components and anthrolysin in vesicles, with some vesicles containing more than one toxin component. Toxin-containing vesicles were also visualized inside B. anthracis-infected macrophages. ELISA and immunoblot analysis of vesicle preparations confirmed the presence of B. anthracis toxin components. A mAb to protective antigen protected macrophages against vesicles from an anthrolysin-deficient strain, but not against vesicles from Sterne 34F2 and Sterne δT strains, consistent with the notion that vesicles delivered both toxin and anthrolysin to host cells. Vesicles were immunogenic in BALB/c mice, which produced a robust IgM response to toxin components. Furthermore, vesicle-immunized mice lived significantly longer than controls after B. anthracis challenge. Our results indicate that toxin secretion in B. anthracis is, at least, partially vesicle-associated, thus allowing concentrated delivery of toxin components to target host cells, a mechanism that may increase toxin potency. Our observations may have important implications for the design of vaccines, for passive antibody strategies, and provide a previously unexplored system for studying secretory pathways in Gram-positive bacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Both Lethal and Edema Toxins of Bacillus anthracis Disrupt the Human Dendritic Cell Chemokine Network

Bacillus anthracis, the agent of anthrax, produces two main virulence factors: a capsule and two toxins. Both lethal toxin (LT) and edema toxin (ET) paralyze the immune defense system. Here, we analyze the effects of LT and ET on the capacity of human monocyte-derived dendritic cells (MoDC) to produce proinflammatory chemokines. We show that both toxins disrupt proinflammatory chemokine product...

متن کامل

Bacillus anthracis Factors for Phagosomal Escape

The mechanism of phagosome escape by intracellular pathogens is an important step in the infectious cycle. During the establishment of anthrax, Bacillus anthracis undergoes a transient intracellular phase in which spores are engulfed by local phagocytes. Spores germinate inside phagosomes and grow to vegetative bacilli, which emerge from their resident intracellular compartments, replicate and ...

متن کامل

Aggregation of bacillus thuringiensis Cry1A toxins upon binding to target insect larval midgut vesicles

During sporulation, Bacillus thuringiensis produces crystalline inclusions comprised of a mixture of delta-endotoxins. Following ingestion by insect larvae, these inclusion proteins are solubilized, and the protoxins are converted to toxins. These bind specifically to receptors on the surfaces of midgut apical cells and are then incorporated into the membrane to form ion channels. The steps req...

متن کامل

Production of Bacillus anthracis protective antigen is dependent on the extracellular chaperone, PrsA.

Protective antigen (PA) is a component of the Bacillus anthracis lethal and edema toxins and the basis of the current anthrax vaccine. In its heptameric form, PA targets host cells and internalizes the enzymatically active components of the toxins, namely lethal and edema factors. PA and other toxin components are secreted from B. anthracis using the Sec-dependent secretion pathway. This requir...

متن کامل

Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins

Tethered lipid bilayer membranes (tBLMs) have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 44  شماره 

صفحات  -

تاریخ انتشار 2010